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ABSTRACT

After a brief survey of the characteristics of a heat bath and its role

In relaxation phenomena leading to the familiar exponential decay, It is

argued that the nonexponential form found commonly in many condensed matter

systems indicates that the energy spectrum of the heat bath plays a crucial

part in these phenomena. In equilibrium statistical mechanics, the mean

energy of a heat bath determines the temperature of a system placed in contact

with It. We show that the relaxation of a system placed In contact with this

heath bath is determined by the distribution of the energy level spacings for

level spacings small as compared to the mean spacing. After presenting

arguments in favor of a linear behavior of this distribution, we show, in a

somewhat heuristic way, that the resulting relaxation function has a

nonexponentlal form.
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I. INTRODUCTION

Experimental data on relaxation phenomena in diverse areas of condensed

matter physics are quite generally found to exhibit slower than exponential

decay for long times in the form (see ref. 1. and references therein)

exp [-a(t/h s )b], a>o, o<b<l (1)

where rsis a characteristic time in the system. Traditionally 2,3 the residual

part of relaxing quantities are discussed either in terms of a pure

exponential decay

expE-t/T (2)

where r is the "relaxation time",or in terms of a superposition of such terms

with a distribution of r. rs * in general but there is a relation between

them (see Ref. 1.). (References 4,5,6 are a representative set selected at

random out of a large number of papers on this subject. See Ref. 1. for more

citations). In this framework, T is obtained from a calculation of the time-

independent transition rate given by the Golden Rule. The physical picture of

relaxation here is that the system which is relaxing and which is described by

a Hamiltonian, HS, is in contact with a heat bath which is a much larger

system described by a Hamiltonian, HB, and which is not affected by the

interaction (HBS) with the relaxing system. This interaction is supposed to

be "weak" and leads to relaxation. The equilibrium properties of the given

system In contact with the heat bath are determined by the temperature of the

bath, which in turn is just the mean energy associated with the bath.
7,8

An alternative scheme to derive (2) is the master equation approach (see
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for example Ref. 8). Here again the time-independent transition rate is

employed in setting up the master eqation. The physical model for relaxation

is however still the same - system, heat bath, and their mutual (weak)

interaction. An elementary discussion of the exponential decay in stochastic

processes and in quantum mechanics may be found in Merzbacher's book, 9 and an

extensive discussion of the role of time independent transition rates is found

in Tolman 7 .

Now, since exponential decay is not observed, and the decay law given by

(1) is more a rule than an exception, it is natural to seek an explanation for

this behavior by examining in more detail the origin of the time-independent

transition rate. This shift of emphasis from time independent transition rate

(TITR) to time dependent transition rate (TDTR) in order to arrive at (1) has

been emphasized recently by Teitler et.al. 10 from phenomenological

considerations of rate equations, and from general considerations based on the

Paley-Wiener theorem by Ngai et.al.11 It was also recognized early in the

development of the TDTR that using the Golden Rule 1 required a linear

dependence of the level spacing density for low spacings in order to obtain

the long time behavior of the form given by Equ. (1). The purpose of the

present paper is to suggest that the heat bath be described by any chaotic

quantum system. The reasons for this suggestion are given in Sec. II. In

Sec. II, we set up the calculatlonal scheme for computing TDTR and obtain the

required time dependence in terms of the slope and cut off of the linear law

for the level spacing distribution at small spacings of the heat bath. In

Sec. IV a brief summary of the results obtained is given.
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II. SPECTRAL CHARACTERISTICS OF THE HEAT BATH

We are primarily interested in the long time relaxation of any physical

property of a system, for example a dielectric or a mechanical property. What

is involved in a relaxation process is a readjustment of the system in such a

way that there is no transport phenomenon accompanying it.12 In general

terms, the system that is undergoing relaxation is described by a Hamiltonian

HS, and it is supposed to be in contact with a much larger system described by

a bath (or reservoir) hamiltonian H8. The interaction between the two, whose

hamiltonian is HBS, is assumed to be weak and is supposed to induce the

process of relaxation in the physical quantity of interest in the system. It

is important to realize that the bath system is large compared to the system

that is under investigation so that while the bath is not affected by the

interaction with the system, its effect on the system is paramount.

The precise nature of the heat bath is left unspecified except for

stating that the system in contact with it acquires its temperature In the

equilibrium situation. In the conventional approach, the details of the bath

hamiltontan are not Important even though it is recognized to have an almost7I
continuous energy spectrum, by virtue of its enormous size.7 Also, in the

final analysis, the bath variables do not occur in the description of the

system so that one averages over these variables in computing properties of

the system. Since only the temperature of the bath enters the picture the

only relevant entity appearing in this picture is the mean energy of the bath

system, which is kept fixed, thus determining the temperature. It is clear

from this description of the heat bath that a detailed knowledge of HB is not

required, except for its temperature and the obvious observation that HB has

-.:.Jst continuous spectrum bounded from below with a finite mean. One of
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the approaches to the theory of relaxation is to construct the density matrix

associated with the system plus bath In the presence of HBS and integrate out

the bath variables by tracing over all the states of the bath, leaving behind

a residual density matrix for the system, which can be used to compute any

property, P(t), of the system, by calculating the appropriate average of the

operator representing P(t) over the residual density matrix. Feynman and

Vernon13 have given a formal path integral representation for this density

matrix and Fano1 4,15 has given an expression in the Interaction

representation.

It may not be out of place here to point out that there are

circumstances when the nature of the heat bath is known purely from the

physical consideration of the energy or time domain one is examining. For

certain electronic properties, phonons (the motion of the crystal lattice) are

the relevant heat bath system and so for excitations involving frequencies of

the order of 101 3 Hz and above, the phonon excitations determine the

relaxation properties upto times of order i013 sec and here the relaxation

rate is essentially exponential. When one waits for longer times, say 10-10

sec, the phonon excitations are not relevant any longer and the relevant bath

system must be something else. It must be pointed out however, that the

phonon system is itself imbedded in the new bath system which we are proposing

so that there is a common temperature for all the entities making up the

system. Thus we may picture a hierarchy of heat baths, each imbedded in the

other, so that they all have a common temperature and each Is a relevant heat

bath in the appropriate time regime. This nesting of heat baths leads to

different time dependences of the relaxing entity in different time domains.

What we are interested in for the present work Is the relatively long time

domain such as I0-10 sec and lower, where the usual known excitations become
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irrelevant and a new mechanism is called for. In the present paper we are

concerned only with this regime. It must be stressed that the theoretical

formalism given by Fano 1 4 '1 5 is applicable quite generally to all these

situations.

In the traditional description7 no mention of the nature of the heat bath

energy spectrum is made except for its being continuous. Thus we describe the

system undergoing relaxation by means of the Hamiltonian

H= HS + HB + HBS (3)

where HS, H8, and HBS are the hamiltonian for the system, bath, and their

mutual interaction. One may then compute the density matrix of the entire

system, given that at time t=O the system and the bath are not interacting,

and have been prepared such that the system is in some preassigned state and

the bath is in thermal equilibrium.

As a model for the heath bath we shall adopt any large quantum system

whose classical motion is irregular. For such systems Berry has shown in a

series of elegant papers16-20 that the quantum levels are fairly regularly

distributed and that the probability density P(S) for the spacings between

neighboring levels has the asymptotic form

P(S)u aS (0<S<<6) (4)

provided S is small as compared to the average spacing 6 . For larger values

of S the spacings distribution P(S) goes through a maximum to decay to zero at

large values of S. These details depend on the precise choice of the quantum

system, but the linear behavior of the spacings distribution appears to be
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universal, i.e. it holds for a "generic" chaotic quantum system.

It is remarkable that the same linear behavior (4) of the spacings

distribution is found if the heat bath is described by means of a random

matrix hamiltonian. The hamiltonian for the heat bath is very complex so that

we may replace it by a statistical description. For the determination of

equilibrium properties of a system in contact with the heat bath, only the

average of the bath hamiltonian is needed. Hence one can try to use a

"Gaussian Orthogonal Ensemble" (GOE) for the random matrix for describing the

heat bath because we take the bath system as being time reversal invariant.

Since only the mean value of the bath Hamiltonian is required for equilibrium

properties, we use a "canonical ensemble" in setting up its density matrix.

We now observe that the GOE has known average spectral properties, which we

employ in our analysis of the Golden Rule in determining the TDTR induced by

the bath in the system. For a description of the philosophy and the theory of

random matrix hamiltonians one may refer to Porter's collection of papers and

his clear introductory summary21 , Mehta's book22 , and a more recent review by

Brody et. al. 2 3

It is remarkable that both models for the heat bath which we have

considered in this section, (a) an irregular quantum system and (b) a random

matrix hamiltonian, lead to the same linear behavior of the spacings

distribution. We feel that (a) is the physically correct model for a heat

bath and that the random matrix is just a convenient way to simulate an

irregular quantum system. It may not be out of place here to conjecture that

the random matrix hamiltonian may indeed be a very accurate model for a

generic irregular quantum system if one coarse grains the energy spectrum. A

hint of this equivalence may be found when one compares the average density of

states for the quantum version of Sinai's billiard 19 with the middle
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part of the semi-circular law appropriate for the density of states of a

rap(tom matri x.
21-23

III. CALCULATION OF THE TIME DEPENDENT TRANSITION RATE

The calculation proceeds in three steps: (I) set up a rate equation for

the physical quantity that is undergoing relaxation in terms of a TDTR; (ii)

compute the TDTR; and (iii) solve the rate equation once the TDTR is

determined. Our goal is to examine the long time limit of the time dependence

and so there is much simplification that can be made right from the start. A

formal justification of step (i) is given elsewhere24 . We are concerned here

mainly with step (ii) and calculate the transition rate using the Golden Rule

with proper attention paid to the types of interactions that could be

suggested for HBS. Having done this, we then invoke the cumulant expansion

technique14 or equivalently the linked cluster scheme to calculate the TDTR

essentially to all orders in HBS. This is in the same spirit as in the binary

correlation approximation.
23

We are thus led to consider the survival probability of a state of the

system when it interacts with the bath. Let the heat bath have states Ib> and

the relaxing system two representative states 1I> and 12>. At tuo, the

combined system (S + B) is in a state js,b> where jb> is some state with its

energy In the range E -bhEb<E +6 . For a "good" heat bath, in general, one

does not know the state lb> apart from the fact that it has an energy Eb in

some energy region (E- hb E+ A). The standard Golden Rule result9 for the

probability that the total system Is in the state (s'b'> at time t given the

Initial state is tsb> is



10

ICslb,(t) = 2 'Vsb,sb'12 (1-cos sb,sblt) W-2sb,s'b' (4)

where w wsb,ssbs = Ess+ Ebi - Es - Eb, with Es , the system energy. The matrix

element of the system-bath coupling Hamiltonian HBS between the states Isb>

and s'b'> is denoted by Vsb,sb,.

In order to obtain the total transition probability Qs,s,(t) for the

* system to go from state Is> t, state is'> irrespective of the state of the

heat bath we sum over Ib'> and average over Ib>. This gives for the

probability to find the system in state Is'> at time t

- 1(t= , (II'sb(-cos sb,s'b't wsb,sb, (5)

where B denotes the number of heat bath states in (E-&,E+&). In order to

express the relaxation function Qs,s,(t) in terms of the spectral

characteristics of the heat bath one now proceeds, in a somewhat heuristic

fashion, as follows.

Firstly, as the system-bath coupling will depend only on the global

properties of the heat bath the matrix element Vsb,smb,, will be practically

independent of the choice of Ib> and Ib'> in the energy range (E-A, E+&).

This enables us to put

sb,szb Z Vs s ,  (6)

and to bring the constant Vs s , outside the summation sign in (5).

Secondly, we note that the resulting sum over b' will be independent of

the choice of b. Hence the average over b is trivial and (5) can be written

as the sum

"- " "" -- S ..... ... =L .- . . . _ . w . .. h - ' "- ... , -, " - -
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Q 'tW_ 2 V t 2) 1-2 (7)
~Ss -7f ' s, (1~WbSbt sbslb'o

In a relaxation process, the transition occurs from a state of the system

to another state of the system which is essentially degenerate with it and so

" sb,s'bs = Eb' - Eb. The sum (7) can now be written as an integral

- Qs's,1(t) =4 ixs, 1 21 11- Cos F-tlW) E-2 p(C) d69 (8)

where p(e) de denotes the average number of heat-bath quantum states with

energies in (Eb+ e, Eb+ c+dc)given a heat-bath level at Eb. For Clarge as

compared to the average level spacing 6one has P(E)- 6" . On the other

hand, for E < 6 we can use the result (4) for the distribution of level

spacings of an irregular quantum system and put p(C)- Q C.

Thirdly, we use the following qualitative form for P suggested by the

preceedi ng remarks
:,P(C) a e O <E<Co,  (9a)

p (C) = 61 C < C < , (9b)

e = (a6)l. (9c)
0

4The calculation of the integral (8) is now straightforward, and leads to the

asymptotic behavior

Q 1(t) 4 alVSI 2 An(1) ....... (t>>N), (1Oa)Qs,s'lt- ls s

i a6 i exp(-1-Y). (lOb)
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The dots in (10a) denote terms that vanish for t and the constant y0 .5 772

is Euler's constant. Of course, for small values of t the quantity Qs se(t)

will be proportional to t2o

The calculation outlined above amounts to lowest order perturbation

theory. It was shown by Fano14 that when one proceeds in a rigorous fashion

one obtains a cumulant expansion for the transition probability, which

essentially leads to an exponentiation of the Golden Rule result (10)

bQs(t) - (t/) b , (t>>), (11a)

b,4 IV5  2,  (11b)

With a time dependent transition rate of this form the solution of a rate

equation will lead to terms of the form (1), with O<b<l, for otherwise, with

b>1, one has faster than exponential decay.

IV. CONCLUDING REMARKS

We have shown, in a somewhat heuristic way, how the fine-grained spectral

characteristics of the heath bath determine the form of the relaxation

function. It is remarkable that the only quantities which enter are the

average spacing 6, the average system-bath matrix element Vs5 s,, and the

slope sof the spacing distribution at small spacings. The linear behavior of

this distribution at small spacings is a generic feature of irregular quantum

systems16 "20, hence an irregular (chaotic) quantum system is a universal model

Seath bath.
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Our considerations also show that one can use the Gaussian orthogonal

ensemble of random matrices to simulate a chaotic quantum system, and hence to

model a heath bath. This might also explain the success of random matrix

theory in nuclear physics and other branches of physics.

The main motivation of the work reported in this paper was to make the

concept of the heat bath, which up till now inhabited the literature on

statistical physics as an almost featureless entity, more specific and to

determine which of its properties enter into the physics of relaxation.
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